

CCP-NC Discussion Meeting 11 May 2023

First-Principles Computation of pNMR Chemical Shifts

Zhipeng Ke, Edoardo Fusco, Daniel Dawson, Sharon Ashbrook Michael Bühl

> School of Chemistry and Centre of Magnetic Resonance, University of St Andrews

History of Chemical-Shift Calculations

1950 Theory (Ramsey)	
1966 Coupled Hartree-Fock (Lipscomb) 1974 GIAO (Ditchfield) Ha	rtree-Fock level
1983 IGLO (Kutzelnigg)	
1990SOLO (Bouman, Hansen)1992GIAO-MP2 (Gauss)1996GIAO-CCSD(T) (Gauss)	luding ectron correlation
1994 SOS-DFPT-IGLO (Malkin) 1995/96 GIAO-DFT (Ziegler, Cheeseman, Pulay	y) } DFT level
1999 ZORA-DFT (Ziegler)	} relativistic level
2001 GIPAW-DFT (Mauri)	} periodic systems

2003/04 paramagnetic NMR, $S = \frac{1}{2}$ (Vaara, Patchkovskii) 2007/08 paramagnetic NMR, any S (Kaupp, Vaara)

closed shell

Theory of pNMR chemical shifts

Milestone papers:

Z. Rinkevicius, J. Vaara, L. Telyatnyk, O. Vahtras, J. Chem. Phys. 2003, 118, 2550.

S. Moon, <mark>S. Patchkovskii,</mark> in: *Calculation of NMR and EPR Parameters. Theory and Applications,* M. Kaupp, M. Bühl, V. G. Malkin (Eds.), Wiley-VCH, Weinheim, **2004**, pp. 325-340.

P. Hrobarik, R. Reviakine, A. V. Arbuznikov, O. L. Malkina, V. G. Malkin, F. Koehler, M. Kaupp. J. Chem. Phys. **2007**, 126, 024107.

T. O. Pennannen, J. Vaara, Phys. Rev. Lett. 2008, 100, 133002

S. A. Rouf, J. Mareš, J. Vaara, J. Chem. Theory Comput. 2015, 11, 1683.

B. Martin, J. Autschbach, Phys. Chem. Chem. Phys. 2016, 18, 21051.

G. Mali, M. Mazaj, J. Phys. Chem. C 2021, 125, 4655.

Theory of pNMR chemical shifts

isotropic magnetic shielding of a nucleus N in a molecule with arbitrary spin multiplicity:

$$\sigma_{iso} = \sigma_{iso(orb)} - \frac{S(S+1)\beta_e}{(3kTg_N\beta_N)[g_e \cdot A_{FC} + g_e \cdot A_{PC} + \Delta g_{iso} \cdot A_{FC} + \frac{1}{3}Tr(\Delta g_{aniso} \cdot A_{dip})]}{P_{aniso} \cdot A_{dip}}$$
orbital shielding part paramagnetic part

S: total spin T: temperature β_e, β_N : Bohr and nuclear magnetons g_e, g_N : free-electron and nuclear g-values $\Delta g_{iso}, \Delta g_{aniso}$: g-tensor elements (g = g_e + 1 · $\Delta g_{iso} + \Delta g_{aniso}$) A_{FC}, A_{PC}, A_{dip} : hyperfine coupling tensor elements

¹³C and ¹H chemical shifts: $\delta_{iso} = \sigma_{iso(orb)}$ (TMS) - σ_{iso}

P. Hrobarik, R. Reviakine, A. V. Arbuznikov, O. L. Malkina, V. G. Malkin, F. Koehler, M. Kaupp. J. Chem. Phys. 2007, 126, 024107.

Application of NMR chemical shift computation

- ➡ support for signal assignment
- ➡ information on (local) structure

well established for diamagnetic molecules and materials

M. Bühl, T. van Mourik, *Wiley Interdisc. Reviews: Comp. Mol. Sci.* **2011**, *1*, 634.

S. E. Ashbrook, D. McKay, *Chem. Commun.* **2016**, *52*, 7186

Metal Organic Frameworks (MOFs)

- -Gas storage and separation
- -Catalysis

-Carrier in medical drug delivery

M. I. H. Mohideen, B. Xiao, P. S. Wheatley, A. C. McKinlay, Y. Li, A. M. Z. Slawin, D. W. Aldous, N. F. Cessford, T. Düren, X. Zhao, R. Gill, K. M. Thomas, J. M. Griffin, S. E. Ashbrook, R. E. Morris, *Nat. Chem.* **2011**, *3*, 304.

Solid-state NMR of MOFs

D. M. Dawson, L. E. Jamieson, M. I. H. Mohideen, A. C. McKinlay, I. A. Smellie, R. Cadou, N. S. Keddie, R. E. Morris, S. E. Ashbrook *Phys. Chem. Chem. Phys.* **2013**, *15*, 919.

Methodology

- Density Functional Theory (DFT)
- Optimisation: PBE0-D3; basis set: 6-31G*/6-31G**(H^{br})/AE1(Cu) (8s7p4d)
- Orbital shielding, g- and A-tensors: PBE, PBE0, PBE0-1/3; basis set: IGLO-II(or III)/AE1(Cu) (9s7p4d)

Validated for mononuclear Cu species (phenolic oximes)

M. Bühl, S. E. Ashbrook, D. M. Dawson, R. A. Doyle, P. Hrobarik, M. Kaupp, I. A. Smellie, *Chem. Eur. J.* **2016**, *22*, 15328. S. E. Ashbrook, G. P. M. Bignami, M. Bühl, D. B. Cordes, D. M. Dawson, R. A. Doyle, Z. Ke, F. M. Mack, A. M. Z. Slawin, I. A. Smellie, *Chem. Commun.* **2017**, *53*, 10512

Molecular model for MOFs

Cu(II) benzoate, isolated paddle-wheel dimers

Z. Ke, L. E. Jamieson, D. M. Dawson, S. E. Ashbrook, M. Bühl, Sol. State Nucl. Magn. Res. 2019, 101, 31.

Molecular model for MOFs

Problem: singlet ground state (no pNMR shifts expected)

(PBEO-¹/₃/IGLO-II//PBEO-D3/AE1)

Molecular model for MOFs

Working hypothesis: pNMR shifts arise from thermal population of triplet state

Boltzmann averaging:

$$\mathbf{x}_{i} = \mathbf{N}_{i}/\mathbf{N}_{total} = \mathbf{g}_{i} \exp(-\Delta \mathbf{E}_{i}/\mathbf{RT})/\sum_{i} \mathbf{g}_{i} \exp(-\Delta \mathbf{E}_{i}/\mathbf{RT})$$

$$\delta_{total} = \sum \mathbf{x}_{i} \delta_{iso(i)}$$

$$i = 1(singlet): \Delta \mathbf{E}_{1} = 0, \quad \mathbf{g}_{1} = 1$$

$$i = 2(triplet): \Delta \mathbf{E}_{2} = \Delta \mathbf{E}_{ST}, \mathbf{g}_{2} = 3$$

 σ_{orb} calculated using broken-symmetry Kohn-Sham DFT

Z. Ke, L. E. Jamieson, D. M. Dawson, S. E. Ashbrook, M. Bühl, Sol. State Nucl. Magn. Res. 2019, 101, 31.

Performance of the model

PBEO-¹/₃ /IGLO-II

Z. Ke, L. E. Jamieson, D. M. Dawson, S. E. Ashbrook, M. Bühl, Sol. State Nucl. Magn. Res. 2019, 101, 31.

Performance of the model

Z. Ke, L. E. Jamieson, D. M. Dawson, S. E. Ashbrook, M. Bühl, Sol. State Nucl. Magn. Res. 2019, 101, 31.

Effect of DFT functional

CAM-B3LYP slightly superior

Effect of structure

Level of pNMR calculations: CAM-B3LYP/IGLO-II

_	Level of opt	Substituents	MAD
	PBEO-D3	R = Ph	23.0
	GFN2-xTB ^{a,b}	R = Ph	22.6
⇒	GFN2-xTB ^{a,b}	R = Me	21.7

significant computational savings

^aC. Bannwarth, S.Ehlert, S.; Grimme, *J. Chem. Theory Comput.* **2019**, *15*, 1652. ^bHigh-spin structure also used for BS singlet.

Multinuclear MOF models

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Pragmatic way to reduce contributions from triplet:

• Scaling of S-T gap (ΔE_{ST}) in Boltzmann distribution

 $x_{trip} = g_{trip} \exp(-s\Delta E_{ST}/RT)/[1 + g_{trip} \exp(-s\Delta E_{ST}/RT)]$ scaling factor s

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Double dimer model for activated HKUST

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Double dimer model for activated HKUST

single scale factor: $x_i = g_i \exp(-s\Delta E_i/RT) / \sum_i g_i \exp(-s\Delta E_i/RT)$

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Temperature dependence

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Temperature dependence

unusual temperature dependence very well reproduced

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Triple-dimer models for activated HKUST

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Triple-dimer models for activated HKUST

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Triple-dimer models for activated HKUST

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Hydrated MOFs

Z. Ke, D. M. Dawson, S. E. Ashbrook, M. Bühl, Chem. Sci. 2022, 13, 2674.

Conclusion

- Molecular models for MOFs validated in "bottoms-up" approach
- pNMR shifts arise from thermal population of highspin states
- Uniform scaling of as-calculated energy gaps required
- Temperature dependence of pNMR signals explained

Next challenge:

refinement of models (dynamics, crystal matrix)

Develop pNMR calculations and experiments into structural tool, e.g. to study uptake of guest molecules